261 research outputs found

    Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors

    Get PDF
    Efflux pumps of the resistance nodulation division (RND) superfamily, such as AcrB, make a major contribution to multidrug resistance in Gram-negative bacteria. The development of inhibitors of the RND pumps would improve the efficacy of current and next-generation antibiotics. To date, however, only one inhibitor has been cocrystallized with AcrB. Thus, in silico struc- ture-based analysis is essential for elucidating the interaction between other inhibitors and the efflux pumps. In this work, we used computer docking and molecular dynamics simulations to study the interaction between AcrB and the compound MBX2319, a novel pyranopyridine efflux pump inhibitor with potent activity against RND efflux pumps of Enterobacteriaceae species, as well as other known inhibitors (D13-9001, 1-[1-naphthylmethyl]-piperazine, and phenylalanylarginine-Ăź-naphthyl-amide) and the binding of doxorubicin to the efflux-defective F610A variant of AcrB. We also analyzed the binding of a sub- strate, minocycline, for comparison. Our results show that MBX2319 binds very tightly to the lower part of the distal pocket in the B protomer of AcrB, strongly interacting with the phenylalanines lining the hydrophobic trap, where the hydrophobic por- tion of D13-9001 was found to bind by X-ray crystallography. Additionally, MBX2319 binds to AcrB in a manner that is similar to the way in which doxorubicin binds to the F610A variant of AcrB. In contrast, 1-(1-naphthylmethyl)-piperazine and phenylalanylarginine-Ăź-naphthylamide appear to bind to somewhat different areas of the distal pocket in the B protomer of AcrB than does MBX2319. However, all inhibitors (except D13-9001) appear to distort the structure of the distal pocket, impairing the proper binding of substrates

    The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations

    Get PDF
    (ImH)[trans-RuCl4(DMSO-S)(Im)], (Im = imidazole, DMSO-S = S-bonded dimethylsulfoxide), NAMI-A, is the first anticancer ruthenium compound that successfully completed Phase I clinical trials. NAMI-A shows a remarkable activity against lung metastases of solid tumors, but is not effective in the reduction of primary cancer. The structurally similar (ImH)[trans-RuCl4(Im)(2)], ICR (or KP418), and its indazole analog (KP1019) are promising candidate drugs in the treatment of colorectal cancers, but have no antimetastatic activity. Despite the pharmacological relevance of these compounds, no rationale has been furnished to explain their markedly different activity. While the nature of the chemical species responsible for their antimetastatic/anticancer activity has not been determined, it has been suggested that the difference between reduction potentials of NAMI-A and ICR may be the key to the different biological responses they induce. In this work, Density Functional Theory calculations were performed to investigate the hydrolysis of NAMI-A and ICR in both Ru-III and Ru-II oxidation states, up to the third aquation. In line with experimental findings, our calculations provide a picture of the hydrolysis of NAMI-A and ICR mainly as a stepwise loss of chloride ligands. While dissociation of Im is unlikely under neutral conditions, that of DMSO becomes competitive with the loss of chloride ions as the hydrolysis proceeds. Redox properties of NAMI-A and ICR and of their most relevant hydrolytic intermediates were also studied in order to monitor the effects of biological reductants on the mechanism of action. Our findings may contribute to the identification of the active compounds that interact with biological targets, and to explain the different biological activity of NAMI-A and ICR

    Molecular interactions of carbapenem antibiotics with the multidrug efflux transporter acrb of escherichia coli

    Get PDF
    The drug/proton antiporter AcrB, engine of the major efflux pump AcrAB(Z)-TolC of Escherichia coli and other bacteria, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multi-drug resistance (MDR) phenotype. Although hundreds of small molecules are known to be AcrB substrates, only a few co-crystal structures are available to date. Computational methods have been therefore intensively employed to provide structural and dynamical fingerprints related to transport and inhibition of AcrB. In this work, we performed a systematic computational investigation to study the interaction between representative carbapenem antibiotics and AcrB. We focused on the interaction of carbapenems with the so-called distal pocket, a region known for its importance in binding inhibitors and substrates of AcrB. Our findings reveal how the different physico-chemical nature of these antibiotics is reflected on their binding preference for AcrB. The molecular-level information provided here could help design new antibiotics less susceptible to the efflux mechanism

    Low cadmium concentration in whole blood from residents of Northern Sardinia (Italy) with special reference to smoking habits

    Get PDF
    Introduction. The present study was initiated to investigate the cadmium concentrations in whole blood of Northern Sardinian, non-occupationally exposed adult subjects. Sardinia is a large Italian island which differs genetically and environmentally from other mainland Italian areas. Methods. Two hundred and forty-three adults (157 females and 86 males) were selected in the study area from subjects who were undergoing blood collection for laboratory analysis during the period January 2005-May 2005. Whole blood was analysed by graphite furnace atomic absorption spectrometer equipped with a Zeeman-effect background corrector (Perkin Elmer ZL5100) and an auto sampler. The adopted analytical procedure uses the Stabilized Platform Temperature Furnace (STPF) technique. Results. The mean value of Blood Cadmium Concentration (BCdC), expressed as Geometric Mean, was 0.32 mg/l (CI 95%: 0.31-0.34 mg/l) significantly ranging from 0.27 mg/l (CI 95%: 0.26-0.29 mg/l) in non-smokers to 0.34 mg/l (CI 95%: 0.30-0.39 mg/l) in ex-smokers up to 0.47 mg/l (CI 95%: 0.42-0.53 mg/l) in smokers (p inf. 0.0001). Discussion. The results show that BCdC levels in Northern Sar- dinian non-occupationally exposed adults are lower than levels found in many other regions, including those within Italy. Nev- ertheless, similar values have been detected in other European countries and cities. Conclusions. In relation to other reports in which data were analysed by strata for smoking habit and age, we found similar BCdC values among non smokers. However, Sardinian smokers seem to show lower levels of blood cadmium

    A framework for dissecting affinities of multidrug efflux transporter AcrB to fluoroquinolones

    Get PDF
    Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps

    Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    Get PDF
    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA

    Cardiac mitochondria alteration and peripheral vessel morphology in female diabetes

    Get PDF
    One of diabetes complications is chronic cardiomyopathty and fibrotic alteration of aorta and peripheral vessels. Diabetes has been correlated to ROS superproduction (Lashin et al., 2006) and an alteration of mitochondrial chain complexes function in the whole heart (Herelin et al., 2011). Despite diabetic cardiomyopathy is most frequent in women, to date studies on female experimental diabetic models are lacking. Our aim was to investigate on heart mitochondrial oxygen phosphorylation (OXPHOS), and on aorta and portal vein morphology in female Wistar rats, after 4 and half months of streptozotocin-induced (65 mg/kg) diabetes. Mitochondrial OXPHOS was assessed by means of a Clark-type electrode on the following isolated mitochondrial subpopulations: left and right ventricles subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria. Morphology and extracellular matrix composition of aorta and portal vein were investigated in light microscopy on paraformaldehyde fixed samples, stained with Masson Trichrome method (for collagen fibers) and Weigert’s stain (for elastic fibers). Evaluation of OXPHOS revealed an impairment of complex II in mitochondrial diabetic female rats in left and right IFM, but not in SSM. Interestingly, administration of the substrate glutamate resulted in an improvement of complex I efficiency in left IFM only, while association of complex I and II substrates displayed a reduced efficiency both in left and right IFM. Neither administration of glucidic substrates on SSM or of lipidic substrates on both SSM and IFM resulted in any change of mitochondrial OXPHOS efficiency. The study of connective fibrous composition in aorta and vena porta revealed a slight more abundant collagen production in the aorta’s wall and a disorganized and fragmented aspect of elastic bundles in the portal vein. Taken together, these data suggest a peculiar unknown development of diabetic cardiopathy in female rats

    Nanoscale Assembly of Functional Peptides with Divergent Programming Elements

    Get PDF
    Self-assembling peptides are being applied both in the biomedical area and as building blocks in nanotechnology. Their applications are closely linked to their modes of self-assembly, which determine the functional nanostructures that they form. This work brings together two structural elements that direct nanoscale self-association in divergent directions: proline as a β-breaker and the β-structure-associated diphenylalanine motif, into a single tripeptide sequence. Amino acid chirality was found to resolve the tension inherent to these conflicting self-assembly instructions. Stereoconfiguration determined the ability of each of the eight possible Pro-Phe-Phe stereoisomers to self-associate into diverse nanostructures, including nanoparticles, nanotapes, or fibrils, which yielded hydrogels with gel-to-sol transition at a physiologically relevant temperature. Three single-crystal structures and all-atom molecular dynamics simulations elucidated the ability of each peptide to establish key interactions to form long-range assemblies (i,e., stacks leading to gelling fibrils), medium-range assemblies (i.e., stacks yielding nanotapes), or short-range assemblies (i.e., dimers or trimers that further associated into nanoparticles). Importantly, diphenylalanine is known to serve as a binding site for pathological amyloids, potentially allowing these heterochiral systems to influence the fibrillization of other biologically relevant peptides. To probe this hypothesis, all eight Pro-Phe-Phe stereoisomers were tested in vitro on the Alzheimer's disease-associated Aβ(1-42) peptide. Indeed, one nonfibril-forming stereoisomer effectively inhibited Aβ fibrillization through multivalent binding between diphenylalanine motifs. This work thus defined heterochirality as a useful feature to strategically develop future therapeutics to interfere with pathological processes, with the additional value of resistance to protease-mediated degradation and biocompatibility

    Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella.

    Get PDF
    Salmonella is an important genus of Gram-negative pathogens, treatment of which has become problematic due to increases in antimicrobial resistance. This is partly attributable to the overexpression of tripartite efflux pumps, particularly the constitutively expressed AcrAB-TolC. Despite its clinical importance, the structure of the Salmonella AcrB transporter remained unknown to-date, with much of our structural understanding coming from the Escherichia coli orthologue. Here, by taking advantage of the styrene maleic acid (SMA) technology to isolate membrane proteins with closely associated lipids, we report the very first experimental structure of Salmonella AcrB transporter. Furthermore, this novel structure provides additional insight into mechanisms of drug efflux as it bears the mutation (G288D), originating from a clinical isolate of Salmonella Typhimurium presenting an increased resistance to fluoroquinolones. Experimental data are complemented by state-of-the-art molecular dynamics (MD) simulations on both the wild type and G288D variant of Salmonella AcrB. Together, these reveal several important differences with respect to the E. coli protein, providing insights into the role of the G288D mutation in increasing drug efflux and extending our understanding of the mechanisms underlying antibiotic resistance

    Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz

    Get PDF
    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium, and the physics of particle acceleration and shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra high-energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially-resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
    • …
    corecore